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Abstract

This research investigates performance inefficiencies in cloud-native microservice applications built with Java. Using machine learning
algorithms, we analyze system metrics including request rate, response time, and CPU utilization to predict and optimize throughput in dynamic
cloud environments.Introduction: Microservices architectures enable scalability and resilience but present performance engineering challenges.
Java-based microservices face memory consumption, startup time, and garbage collection issues. Current literature lacks systematic performance-
oriented analysis and optimization approaches for cloud-native microservice systems.Research Significance: Performance engineering for
microservices remains underexplored despite its criticality. This research addresses data collection, monitoring, and diagnostic challenges across
multiple system layers. Findings help optimize Java microservice deployments, reducing latency, improving resource utilization, and enhancing
user experience in cloud environments.Methodology: We collected 100 performance observations from cloud-native Java microservices,
measuring request rate (rps), average response time (ms), CPU utilization (%), and system throughput (rps). We applied Linear Regression and
Random Forest Regression models to establish correlations between metrics and predict system throughput, evaluating model accuracy using
standard error metrics.Results and Discussion: Descriptive statistics revealed significant performance variability: request rates ranged from 113 to
1999 rps (mean: 1072.58), response times from 24.31 to 789.77 ms (mean: 394.71), and CPU utilization from 10.43% to 93.78% (mean: 53.52%).
Linear Regression achieved R* of 0.9577 on training data; Random Forest Regression significantly outperformed with R* of 0.9922, demonstrating
superior predictive accuracy. Both models generalized reasonably to test data, with RFR exhibiting better robustness in handling extreme values.
Future Scope: Investigate dynamic workload management and containerization optimization techniques for Java microservices.

Keywords: Cloud-native computing, Microservices architecture, Performance engineering, Java optimization, Machine learning prediction,

System throughput.

Introduction

While performance is a fundamental requirement for
achieving scalability and resilience in microservice-based systems,
performance engineering for microservices has received relatively
little attention from both the microservices and performance
engineering research communities. Most existing studies primarily
focus on architectural design, deployment strategies, and service
orchestration, while performance-oriented analysis, modeling,
and optimization are less explored. This lack of emphasis highlights
the need for systematic performance engineering approaches that
can effectively support the scalability and resilience demands of
modern microservice architectures. [1]

Microservice-based architectures introduce several domain-
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specific challenges that need careful consideration. For example,
due to frequent releases and continuous deployment cycles,
comprehensive  system-level testing becomes impractical
Consequently, modifications to traditional testing and
performance evaluation approaches are required to effectively
address the dynamic and rapidly evolving nature of microservice
environments.The measurements collected in this manner are later
used to identify anomalies such as unusually high response times
or excessive resource consumption. In microservice architectures,
performance-related data can be collected at multiple levels:
from within individual microservices, from the containers
running them, and from the interactions between interdependent
microservices. However, collecting data across these layers and
establishing correlations between them presents several challenges
in terms of data integration, monitoring overhead, and accurate
performance diagnostics. [2]

This research paper investigates performance inefficiencies
in cloud-native applications operating within dynamic cloud
environments. Such environments are often characterized
by fluctuating workloads, elastic resource provisioning, and
continuous deployment practices, all of which can contribute to
unstable and suboptimal application behavior. These performance
deficiencies negatively impact user experience by increasing
latency and reducing service reliability, while also decreasing
operational efficiency through inefficient resource utilization
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and high management overhead. Addressing these challenges is
therefore crucial for ensuring reliable and scalable cloud-native
systems. [3]

This provides a comprehensive overview of how microservices
can be effectively utilized within cloud-native applications to
enhance scalability, resilience, and adaptability. By exploring
architectural principles, deployment practices, and evolving
technologies, thisstudyunderscoresthe crucial role of microservices
in supporting robust and scalable cloud-native systems.This
flexibility is commonly referred to as polyglot programming,
which allows developers to use multiple programming languages
and technologies within a single system. The shift from monolithic
architectures to microservices represents a fundamental change in
the design and management of software applications. Traditionally,
monolithic architectures have been used for decades; in this
approach, the entire application is built and deployed as a single,
tightly integrated block of code. While this approach simplifies
initial development, it often limits scalability, flexibility, and
maintainability as applications grow in complexity. [4-5]

In the development of cloud-native applications, which
are specifically designed to fully utilize the capabilities of
cloud computing, the microservices architecture has gained
considerable importance. Cloud-native applications prioritize
resilience, scalability, and ease of maintenance, enabling them to
perform efficiently in dynamic and distributed environments.In a
microservices architecture, individual services can be updated or
modified independently without affecting the entire application.
This isolation reduces the risk associated with system changes
and enables frequent, incremental updates, thereby supporting
continuous integration and continuous deployment practices. [6]

While Java is a popular and reliable choice for building
microservices, it presents several challenges, including high
memory consumption, long startup times, and performance
issues associated with garbage collection. These limitations can
impact the performance and responsiveness of microservice-
based applications, especially in resource-constrained or highly
dynamic environments.Several studies comparing Java and Go
show that Go generally performs better than Java in terms of
sustained performance. This performance advantage is largely due
to Go being a statically compiled language with minimal runtime
overhead, resulting in faster execution and efficient resource
utilization.[7]

Traditional Java threads generally consume more memory,
and creating and terminating them requires significant explicit
effort. This added overhead can limit scalability and performance,
especially in systems requiring high concurrency, such as
microservice-based applications. [8]

A comprehensive study on microservices testing approaches
published on the arrive platform highlights that inconsistencies
in the environment lead to behaviors that cannot be reliably
reproduced in testing systems. Such discrepancies pose significant
challenges in verifying microservices and ensuring consistent
performance across development, testing, and production
environments.[9]

that microservices need to sustain resilience under network-
related challenges, effectively managing situations where dependent
services experience slow responses or become unavailable.
Ensuring such fault tolerance is critical for maintaining the
reliability and stability of distributed microservice-based systems.
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(10]

For efficient testing of microservices, limitations in observability
and diagnosability pose significant challenges. According to
research published on the distributed nature of request processing
across multiple services creates considerable complexities. This
makes it difficult to fully understand and analyze the behavior of
the system during testing.[11]

In recent years, a new architectural paradigm, the cloud-native
microservices architecture, has emerged as a prominent approach
in software system design. This architecture designs applications
as a collection of loosely coupled services; these services can be
developed, deployed, and scaled independently as needed. This
approach enhances flexibility, resilience, and scalability, making it
highly suitable for modern cloud-based environments.[12]

One of the key challenges in microservices-based systems
is maintaining data consistency and state management across
multiple services, while simultaneously ensuring smooth and
reliable data transitions. Addressing this challenge is crucial
for safeguarding the system’s integrity and supporting seamless
interactions between independently deployed services. [13]

The process of refactoring a monolithic application into a
microservices-based architecture introduces numerous technical
and organizational challenges. These challenges arise from
decomposing tightly coupled components, managing data
consistency, redefining service boundaries, and ensuring the
reliability of the system during and after the transformation.[14]

Cloud-native computing, fostered by a vendor-neutral
ecosystem, encompasses a set of technologies that break down
applications into microservices and package them into lightweight
containers. These containerized services are then deployed and
orchestrated across various computing environments, thereby
enabling portability, scalability, and efficient resource utilization.
[15]

Cloud-based capabilities offer significant potential for improving
software engineering practices in many ways. However, realizing
these benefits across the broader software engineering community
presents considerable technical, organizational, and procedural
challenges. [16]

Material and Methods

Request Rate (rps): Request rate, measured in requests per
second (rps), represents the volume of incoming client requests
handled by the system over a given time interval. It is a key
indicator of workload intensity and system demand, reflecting
how frequently services are invoked. Monitoring the request
rate helps in understanding traffic patterns, identifying peak
loads, and evaluating whether the system can scale effectively to
accommodate fluctuating user demand.

Average Response Time (ms): Average response time,
measured in milliseconds, indicates the mean duration taken by
the system to process and respond to incoming requests. This
metric is critical for assessing user-perceived performance, as
higher response times often lead to poor user experience and
reduced service satisfaction. Analyzing average response time
enables the identification of performance bottlenecks and helps
ensure that service-level objectives are consistently met.

CPU Utilization (%): CPU utilization, expressed as a
percentage, measures the proportion of processing capacity
consumed by the application during operation. It provides insights
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into how efficiently computational resources are being used and whether the system is underutilized or experiencing resource saturation.
High CPU utilization may signal performance constraints, while persistently low utilization may indicate inefficient resource allocation.

System Throughput (rps): System throughput, measured in requests per second, represents the number of requests successfully
processed by the system within a specific time frame. It reflects the overall processing capability and efficiency of the system under
varying workloads. Higher throughput generally indicates better performance, provided that response time and resource consumption
remain within acceptable limits.

Machine Learning Algorithms

Linear Regression: Linear Regression is a fundamental statistical and machine learning technique used to model the relationship
between a dependent variable and one or more independent variables. It assumes a linear association and estimates model parameters by
minimizing the error between predicted and observed values. Due to its simplicity, interpretability, and low computational cost, Linear
Regression is often used as a baseline model for prediction and performance comparison in data-driven studies.

Random Forest Regression: Random Forest Regression is an ensemble learning method that combines multiple decision trees
to improve predictive accuracy and robustness. By training each tree on a randomly selected subset of data and features, the model
reduces overfitting and enhances generalization. Random Forest Regression is particularly effective in capturing complex, nonlinear
relationships and handling high-dimensional data, making it well suited for performance prediction and optimization tasks in dynamic
and heterogeneous environments.

Result and Discussion

Table 1. Descriptive Statistics
Request_Rate_rps Avg Response_Time_ms CPU_Utilization_percent System_Throughput_rps

count 100.0000 100.0000 100.0000 100.0000
mean 1072.5800 394.7119 53.5221 691.7277
std 532.1617 233.5579 25.1205 401.4429

min 113.0000 24.3073 10.4302 56.9000
0.2500 649.0000 204.7593 30.5704 369.4425
0.5000 1098.0000 370.9048 56.9172 612.1250
0.7500 1519.0000 621.4135 72.2867 1044.2675
max 1999.0000 789.7718 93.7803 1568.5300

The descriptive statistics indicate considerable variability in system performance across the observed samples. The request rate
ranges from 113 to 1999 requests per second, with a mean of 1072.58 rps, reflecting a highly dynamic workload. Correspondingly, the
average response time varies widely between 24.31 ms and 789.77 ms, with a mean value of 394.71 ms, suggesting inconsistent system
responsiveness under different load conditions. CPU utilization spans from 10.43% to 93.78%, with an average utilization of 53.52%,
indicating alternating periods of underutilization and high processing demand. System throughput also shows significant fluctuation,
ranging from 56.9 to 1568.53 rps, with a mean of 691.73 rps. Overall, these results highlight the strong interdependence between
workload intensity, resource utilization, and system performance, emphasizing the need for effective performance optimization and
dynamic resource management in cloud-native environments.

Table 2. Model Performance Comparison on Training Dataset

Data Symbol R2 EVS MSE RMSE MAE MaxError | MSLE MedAE
Train LR 0.957655 0.957655 7025.26 83.81683 64.73825 206.7129 32.57055 | 49.24015
Train RFR 0.992237 0.992267 1287.97 35.8883 28.04706 116.3131 0.00512 22.8106

The table 2 shows that, the performance of two models—Linear Regression (LR) and Random Forest Regression (RFR)—on the
training dataset shows notable differences. The LR model achieved an R of 0.9577 and an explained variance score (EVS) of 0.9577,
indicating it explains approximately 95.8% of the variability in the data. Its error metrics are relatively higher, with a mean squared error
(MSE) of 7025.26, a root mean squared error (RMSE) of 83.82, a mean absolute error (MAE) of 64.74, a maximum error of 206.71, a mean
squared logarithmic error (MSLE) of 32.57, and a median absolute error (MedAE) of 49.24.In comparison, the RFR model performs
substantially better on the training set, achieving an R* of 0.9922 and an EVS of 0.9923, showing it explains over 99% of the variance. Its
error metrics are significantly lower, with an MSE of 1287.97, RMSE of 35.89, MAE of 28.05, maximum error of 116.31, MSLE of 0.0051,
and MedAE of 22.81, indicating much higher accuracy and more reliable predictions than the linear model.
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Figure 1: Pairwise relationships and distributions of system performance metrics

Figure 1 presents a pairwise visualization of key system performance metrics, including request rate, average response time, CPU
utilization, and system throughput. The diagonal plots illustrate the distribution of each metric, revealing wide variability across
observations, while the off-diagonal scatter plots highlight the relationships between different performance indicators. A strong positive
correlation is evident between request rate and system throughput, indicating that throughput increases proportionally with incoming
workload up to higher load levels. In contrast, average response time and CPU utilization exhibit more scattered relationships with other
metrics, suggesting nonlinear and workload-dependent behavior.
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Figure 2: Correlation heatmap of system performance metrics
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Figure 2 illustrates the correlation matrix among key system performance metrics, including request rate, average response time,
CPU utilization, and system throughput. A strong positive correlation (0.87) is observed between request rate and system throughput,
indicating that higher incoming workloads generally result in increased processing output. In contrast, CPU utilization shows a moderate
negative correlation with system throughput (-0.47), suggesting potential efficiency degradation or resource contention at higher
utilization levels. Average response time exhibits weak negative correlations with the other metrics, implying a complex and possibly

nonlinear relationship with workload and resource usage.
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dataset

Predicted versus actual system throughput for the training

Figure 3 compares the predicted system throughput values
generated by the regression model with the corresponding
actual throughput measurements from the training dataset. The
majority of data points are closely aligned with the diagonal
reference line, indicating strong agreement between predicted and
observed values and demonstrating the model’s ability to capture
the underlying relationship between input features and system
throughput. Minor deviations from the diagonal suggest the
presence of localized prediction errors, particularly at lower and
higher throughput ranges.
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Figure 4: Predicted versus actual system throughput for the testing
dataset

Figure 4 presents a comparison between the predicted and
actual system throughput values for the testing dataset, providing
an evaluation of the model’s generalization capability. Most
data points closely follow the diagonal reference line, indicating
strong agreement between predicted and observed throughput
under previously unseen conditions. Minor deviations at higher

throughput levels suggest slight prediction errors when the system
operates near peak capacity.
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Figure 5: Predicted versus actual system throughput for the training
dataset (refined model)

Figure 5 illustrates the relationship between predicted and actual
system throughput values obtained from the training dataset using
the refined regression model. The data points are tightly clustered
around the diagonal reference line, indicating a high level of
agreement between model predictions and observed throughput.
Compared to earlier training results, the reduced dispersion
suggests improved model fitting and more accurate representation
of the underlying system behavior.
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Figure 6: Predicted versus actual system throughput for the testing
dataset

Figure 6 presents the comparison between predicted and actual
system throughput values for the testing dataset. Although a slight
increase in dispersion is observed compared to the training results,
most data points remain closely aligned with the diagonal reference
line, indicating strong generalization capability of the proposed
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regression model. The minor deviations at higher throughput levels suggest the presence of dynamic workload variations and system-

level uncertainties in unseen data.

Table 3. Model Performance Comparison on Testing Dataset

Data Symbol R2 EVS MSE RMSE MAE MaxError | MSLE MedAE
Test LR 0.947233 0.952693 7363.547 85.81111 66.55762 | 204.2074 | 30.27242 | 50.20547
Test RFR 0.948949 0.958429 7124.113 84.40446 69.40009 | 192.9612 |0.027998 | 56.09848

The table 3 shows that, the performance of the models on the test dataset shows some interesting patterns. The Linear Regression (LR)
model achieved an R? of 0.9472 and an explained variance score (EVS) of 0.9527, indicating it captures roughly 94.7% of the variance in
the data. Its error metrics include a mean squared error (MSE) of 7363.55, a root mean squared error (RMSE) of 85.81, a mean absolute
error (MAE) of 66.56, a maximum error of 204.21, a mean squared logarithmic error (MSLE) of 30.27, and a median absolute error
(MedAE) of 50.21, showing reasonably accurate predictions but with some larger deviations.The Random Forest Regression (RFR) model
achieved slightly better overall performance on the test set, with an R* of 0.9489 and an EVS of 0.9584, explaining nearly 94.9% of the
variance. Its error metrics show mixed results: the MSE is 7124.11, RMSE is 84.40, and maximum error is 192.96, which are slightly better
than LR, but the MAE (69.40) and MedAE (56.10) are somewhat higher, suggesting slightly larger typical deviations for most predictions.
The MSLE for RFR is extremely low (0.028), indicating that on a logarithmic scale, the predictions are very close to actual values.

Conclusion

The analysis of both Linear Regression (LR) and Random Forest
Regression (RFR) models shows that while both approaches
perform well in predicting the target variable, the RFR model
consistently demonstrates superior performance, particularly in
the training phase. On the training data, RFR achieves a higher R*
(0.9922) and explained variance (0.9923), along with significantly
lower error metrics (MSE, RMSE, MAE, and MedAE) compared
to LR, indicating a better fit and more accurate predictions.On the
test data, both models generalize reasonably well, with R* values of
0.9472 for LR and 0.9489 for RFR. Although the Random Forest
model shows slightly higher mean and median absolute errors than
LR, it maintains a lower maximum error and extremely low MSLE,
suggesting it handles extreme values more robustly. Overall, the
RFR model proves to be more reliable and precise, making it the
preferred choice for predictive tasks in this dataset, while LR can
still serve as a simpler baseline model.
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