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Abstract
This research investigates performance inefficiencies in cloud-native microservice applications built with Java. Using machine learning 

algorithms, we analyze system metrics including request rate, response time, and CPU utilization to predict and optimize throughput in dynamic 
cloud environments.Introduction: Microservices architectures enable scalability and resilience but present performance engineering challenges. 
Java-based microservices face memory consumption, startup time, and garbage collection issues. Current literature lacks systematic performance-
oriented analysis and optimization approaches for cloud-native microservice systems.Research Significance: Performance engineering for 
microservices remains underexplored despite its criticality. This research addresses data collection, monitoring, and diagnostic challenges across 
multiple system layers. Findings help optimize Java microservice deployments, reducing latency, improving resource utilization, and enhancing 
user experience in cloud environments.Methodology: We collected 100 performance observations from cloud-native Java microservices, 
measuring request rate (rps), average response time (ms), CPU utilization (%), and system throughput (rps). We applied Linear Regression and 
Random Forest Regression models to establish correlations between metrics and predict system throughput, evaluating model accuracy using 
standard error metrics.Results and Discussion: Descriptive statistics revealed significant performance variability: request rates ranged from 113 to 
1999 rps (mean: 1072.58), response times from 24.31 to 789.77 ms (mean: 394.71), and CPU utilization from 10.43% to 93.78% (mean: 53.52%). 
Linear Regression achieved R² of 0.9577 on training data; Random Forest Regression significantly outperformed with R² of 0.9922, demonstrating 
superior predictive accuracy. Both models generalized reasonably to test data, with RFR exhibiting better robustness in handling extreme values.
Future Scope: Investigate dynamic workload management and containerization optimization techniques for Java microservices. 
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Introduction
 While performance is a fundamental requirement for 

achieving scalability and resilience in microservice-based systems, 
performance engineering for microservices has received relatively 
little attention from both the microservices and performance 
engineering research communities. Most existing studies primarily 
focus on architectural design, deployment strategies, and service 
orchestration, while performance-oriented analysis, modeling, 
and optimization are less explored. This lack of emphasis highlights 
the need for systematic performance engineering approaches that 
can effectively support the scalability and resilience demands of 
modern microservice architectures. [1]

Microservice-based architectures introduce several domain-

specific challenges that need careful consideration. For example, 
due to frequent releases and continuous deployment cycles, 
comprehensive system-level testing becomes impractical. 
Consequently, modifications to traditional testing and 
performance evaluation approaches are required to effectively 
address the dynamic and rapidly evolving nature of microservice 
environments.The measurements collected in this manner are later 
used to identify anomalies such as unusually high response times 
or excessive resource consumption. In microservice architectures, 
performance-related data can be collected at multiple levels: 
from within individual microservices, from the containers 
running them, and from the interactions between interdependent 
microservices. However, collecting data across these layers and 
establishing correlations between them presents several challenges 
in terms of data integration, monitoring overhead, and accurate 
performance diagnostics. [2]

This research paper investigates performance inefficiencies 
in cloud-native applications operating within dynamic cloud 
environments. Such environments are often characterized 
by fluctuating workloads, elastic resource provisioning, and 
continuous deployment practices, all of which can contribute to 
unstable and suboptimal application behavior. These performance 
deficiencies negatively impact user experience by increasing 
latency and reducing service reliability, while also decreasing 
operational efficiency through inefficient resource utilization 
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and high management overhead. Addressing these challenges is 
therefore crucial for ensuring reliable and scalable cloud-native 
systems. [3]

This provides a comprehensive overview of how microservices 
can be effectively utilized within cloud-native applications to 
enhance scalability, resilience, and adaptability. By exploring 
architectural principles, deployment practices, and evolving 
technologies, this study underscores the crucial role of microservices 
in supporting robust and scalable cloud-native systems.This 
flexibility is commonly referred to as polyglot programming, 
which allows developers to use multiple programming languages 
and technologies within a single system. The shift from monolithic 
architectures to microservices represents a fundamental change in 
the design and management of software applications. Traditionally, 
monolithic architectures have been used for decades; in this 
approach, the entire application is built and deployed as a single, 
tightly integrated block of code. While this approach simplifies 
initial development, it often limits scalability, flexibility, and 
maintainability as applications grow in complexity. [4-5]

In the development of cloud-native applications, which 
are specifically designed to fully utilize the capabilities of 
cloud computing, the microservices architecture has gained 
considerable importance. Cloud-native applications prioritize 
resilience, scalability, and ease of maintenance, enabling them to 
perform efficiently in dynamic and distributed environments.In a 
microservices architecture, individual services can be updated or 
modified independently without affecting the entire application. 
This isolation reduces the risk associated with system changes 
and enables frequent, incremental updates, thereby supporting 
continuous integration and continuous deployment practices. [6]

While Java is a popular and reliable choice for building 
microservices, it presents several challenges, including high 
memory consumption, long startup times, and performance 
issues associated with garbage collection. These limitations can 
impact the performance and responsiveness of microservice-
based applications, especially in resource-constrained or highly 
dynamic environments.Several studies comparing Java and Go 
show that Go generally performs better than Java in terms of 
sustained performance. This performance advantage is largely due 
to Go being a statically compiled language with minimal runtime 
overhead, resulting in faster execution and efficient resource 
utilization.[7]

Traditional Java threads generally consume more memory, 
and creating and terminating them requires significant explicit 
effort. This added overhead can limit scalability and performance, 
especially in systems requiring high concurrency, such as 
microservice-based applications.[8]

A comprehensive study on microservices testing approaches 
published on the arrive platform highlights that inconsistencies 
in the environment lead to behaviors that cannot be reliably 
reproduced in testing systems. Such discrepancies pose significant 
challenges in verifying microservices and ensuring consistent 
performance across development, testing, and production 
environments.[9]

that microservices need to sustain resilience under network-
related challenges, effectively managing situations where dependent 
services experience slow responses or become unavailable. 
Ensuring such fault tolerance is critical for maintaining the 
reliability and stability of distributed microservice-based systems. 

[10]
For efficient testing of microservices, limitations in observability 

and diagnosability pose significant challenges. According to 
research published on the distributed nature of request processing 
across multiple services creates considerable complexities. This 
makes it difficult to fully understand and analyze the behavior of 
the system during testing.[11]

In recent years, a new architectural paradigm, the cloud-native 
microservices architecture, has emerged as a prominent approach 
in software system design. This architecture designs applications 
as a collection of loosely coupled services; these services can be 
developed, deployed, and scaled independently as needed. This 
approach enhances flexibility, resilience, and scalability, making it 
highly suitable for modern cloud-based environments.[12]

One of the key challenges in microservices-based systems 
is maintaining data consistency and state management across 
multiple services, while simultaneously ensuring smooth and 
reliable data transitions. Addressing this challenge is crucial 
for safeguarding the system’s integrity and supporting seamless 
interactions between independently deployed services. [13]

The process of refactoring a monolithic application into a 
microservices-based architecture introduces numerous technical 
and organizational challenges. These challenges arise from 
decomposing tightly coupled components, managing data 
consistency, redefining service boundaries, and ensuring the 
reliability of the system during and after the transformation.[14]

Cloud-native computing, fostered by a vendor-neutral 
ecosystem, encompasses a set of technologies that break down 
applications into microservices and package them into lightweight 
containers. These containerized services are then deployed and 
orchestrated across various computing environments, thereby 
enabling portability, scalability, and efficient resource utilization.
[15]

Cloud-based capabilities offer significant potential for improving 
software engineering practices in many ways. However, realizing 
these benefits across the broader software engineering community 
presents considerable technical, organizational, and procedural 
challenges. [16]

Material and Methods
Request Rate (rps): Request rate, measured in requests per 

second (rps), represents the volume of incoming client requests 
handled by the system over a given time interval. It is a key 
indicator of workload intensity and system demand, reflecting 
how frequently services are invoked. Monitoring the request 
rate helps in understanding traffic patterns, identifying peak 
loads, and evaluating whether the system can scale effectively to 
accommodate fluctuating user demand.

Average Response Time (ms): Average response time, 
measured in milliseconds, indicates the mean duration taken by 
the system to process and respond to incoming requests. This 
metric is critical for assessing user-perceived performance, as 
higher response times often lead to poor user experience and 
reduced service satisfaction. Analyzing average response time 
enables the identification of performance bottlenecks and helps 
ensure that service-level objectives are consistently met.

CPU Utilization (%):  CPU utilization, expressed as a 
percentage, measures the proportion of processing capacity 
consumed by the application during operation. It provides insights 
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into how efficiently computational resources are being used and whether the system is underutilized or experiencing resource saturation. 
High CPU utilization may signal performance constraints, while persistently low utilization may indicate inefficient resource allocation.

System Throughput (rps): System throughput, measured in requests per second, represents the number of requests successfully 
processed by the system within a specific time frame. It reflects the overall processing capability and efficiency of the system under 
varying workloads. Higher throughput generally indicates better performance, provided that response time and resource consumption 
remain within acceptable limits.
Machine Learning Algorithms

Linear Regression: Linear Regression is a fundamental statistical and machine learning technique used to model the relationship 
between a dependent variable and one or more independent variables. It assumes a linear association and estimates model parameters by 
minimizing the error between predicted and observed values. Due to its simplicity, interpretability, and low computational cost, Linear 
Regression is often used as a baseline model for prediction and performance comparison in data-driven studies.

Random Forest Regression: Random Forest Regression is an ensemble learning method that combines multiple decision trees 
to improve predictive accuracy and robustness. By training each tree on a randomly selected subset of data and features, the model 
reduces overfitting and enhances generalization. Random Forest Regression is particularly effective in capturing complex, nonlinear 
relationships and handling high-dimensional data, making it well suited for performance prediction and optimization tasks in dynamic 
and heterogeneous environments.

Result and Discussion

Table 1. Descriptive Statistics
Request_Rate_rps Avg_Response_Time_ms CPU_Utilization_percent System_Throughput_rps

count 100.0000 100.0000 100.0000 100.0000
mean 1072.5800 394.7119 53.5221 691.7277

std 532.1617 233.5579 25.1205 401.4429
min 113.0000 24.3073 10.4302 56.9000

0.2500 649.0000 204.7593 30.5704 369.4425
0.5000 1098.0000 370.9048 56.9172 612.1250
0.7500 1519.0000 621.4135 72.2867 1044.2675
max 1999.0000 789.7718 93.7803 1568.5300

The descriptive statistics indicate considerable variability in system performance across the observed samples. The request rate 
ranges from 113 to 1999 requests per second, with a mean of 1072.58 rps, reflecting a highly dynamic workload. Correspondingly, the 
average response time varies widely between 24.31 ms and 789.77 ms, with a mean value of 394.71 ms, suggesting inconsistent system 
responsiveness under different load conditions. CPU utilization spans from 10.43% to 93.78%, with an average utilization of 53.52%, 
indicating alternating periods of underutilization and high processing demand. System throughput also shows significant fluctuation, 
ranging from 56.9 to 1568.53 rps, with a mean of 691.73 rps. Overall, these results highlight the strong interdependence between 
workload intensity, resource utilization, and system performance, emphasizing the need for effective performance optimization and 
dynamic resource management in cloud-native environments.

Table 2. Model Performance Comparison on Training Dataset

Data Symbol R2 EVS MSE RMSE MAE MaxError MSLE MedAE
Train LR 0.957655 0.957655 7025.26 83.81683 64.73825 206.7129 32.57055 49.24015
Train RFR 0.992237 0.992267 1287.97 35.8883 28.04706 116.3131 0.00512 22.8106

The table 2 shows that, the performance of two models—Linear Regression (LR) and Random Forest Regression (RFR)—on the 
training dataset shows notable differences. The LR model achieved an R² of 0.9577 and an explained variance score (EVS) of 0.9577, 
indicating it explains approximately 95.8% of the variability in the data. Its error metrics are relatively higher, with a mean squared error 
(MSE) of 7025.26, a root mean squared error (RMSE) of 83.82, a mean absolute error (MAE) of 64.74, a maximum error of 206.71, a mean 
squared logarithmic error (MSLE) of 32.57, and a median absolute error (MedAE) of 49.24.In comparison, the RFR model performs 
substantially better on the training set, achieving an R² of 0.9922 and an EVS of 0.9923, showing it explains over 99% of the variance. Its 
error metrics are significantly lower, with an MSE of 1287.97, RMSE of 35.89, MAE of 28.05, maximum error of 116.31, MSLE of 0.0051, 
and MedAE of 22.81, indicating much higher accuracy and more reliable predictions than the linear model.
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Figure 1: Pairwise relationships and distributions of system performance metrics

Figure 1 presents a pairwise visualization of key system performance metrics, including request rate, average response time, CPU 
utilization, and system throughput. The diagonal plots illustrate the distribution of each metric, revealing wide variability across 
observations, while the off-diagonal scatter plots highlight the relationships between different performance indicators. A strong positive 
correlation is evident between request rate and system throughput, indicating that throughput increases proportionally with incoming 
workload up to higher load levels. In contrast, average response time and CPU utilization exhibit more scattered relationships with other 
metrics, suggesting nonlinear and workload-dependent behavior. 

Figure 2: Correlation heatmap of system performance metrics
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Figure 3: Predicted versus actual system throughput for the training 
dataset

Figure 2 illustrates the correlation matrix among key system performance metrics, including request rate, average response time, 
CPU utilization, and system throughput. A strong positive correlation (0.87) is observed between request rate and system throughput, 
indicating that higher incoming workloads generally result in increased processing output. In contrast, CPU utilization shows a moderate 
negative correlation with system throughput (–0.47), suggesting potential efficiency degradation or resource contention at higher 
utilization levels. Average response time exhibits weak negative correlations with the other metrics, implying a complex and possibly 
nonlinear relationship with workload and resource usage.

Figure 3 compares the predicted system throughput values 
generated by the regression model with the corresponding 
actual throughput measurements from the training dataset. The 
majority of data points are closely aligned with the diagonal 
reference line, indicating strong agreement between predicted and 
observed values and demonstrating the model’s ability to capture 
the underlying relationship between input features and system 
throughput. Minor deviations from the diagonal suggest the 
presence of localized prediction errors, particularly at lower and 
higher throughput ranges. 

Figure 4: Predicted versus actual system throughput for the testing 
dataset

Figure 4 presents a comparison between the predicted and 
actual system throughput values for the testing dataset, providing 
an evaluation of the model’s generalization capability. Most 
data points closely follow the diagonal reference line, indicating 
strong agreement between predicted and observed throughput 
under previously unseen conditions. Minor deviations at higher 

throughput levels suggest slight prediction errors when the system 
operates near peak capacity. 

Figure 5: Predicted versus actual system throughput for the training 
dataset (refined model)

Figure 5 illustrates the relationship between predicted and actual 
system throughput values obtained from the training dataset using 
the refined regression model. The data points are tightly clustered 
around the diagonal reference line, indicating a high level of 
agreement between model predictions and observed throughput. 
Compared to earlier training results, the reduced dispersion 
suggests improved model fitting and more accurate representation 
of the underlying system behavior. 

Figure 6: Predicted versus actual system throughput for the testing 
dataset

Figure 6 presents the comparison between predicted and actual 
system throughput values for the testing dataset. Although a slight 
increase in dispersion is observed compared to the training results, 
most data points remain closely aligned with the diagonal reference 
line, indicating strong generalization capability of the proposed 
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regression model. The minor deviations at higher throughput levels suggest the presence of dynamic workload variations and system-
level uncertainties in unseen data.

Table 3. Model Performance Comparison on Testing Dataset
Data Symbol R2 EVS MSE RMSE MAE MaxError MSLE MedAE
Test LR 0.947233 0.952693 7363.547 85.81111 66.55762 204.2074 30.27242 50.20547
Test RFR 0.948949 0.958429 7124.113 84.40446 69.40009 192.9612 0.027998 56.09848

The table 3 shows that, the performance of the models on the test dataset shows some interesting patterns. The Linear Regression (LR) 
model achieved an R² of 0.9472 and an explained variance score (EVS) of 0.9527, indicating it captures roughly 94.7% of the variance in 
the data. Its error metrics include a mean squared error (MSE) of 7363.55, a root mean squared error (RMSE) of 85.81, a mean absolute 
error (MAE) of 66.56, a maximum error of 204.21, a mean squared logarithmic error (MSLE) of 30.27, and a median absolute error 
(MedAE) of 50.21, showing reasonably accurate predictions but with some larger deviations.The Random Forest Regression (RFR) model 
achieved slightly better overall performance on the test set, with an R² of 0.9489 and an EVS of 0.9584, explaining nearly 94.9% of the 
variance. Its error metrics show mixed results: the MSE is 7124.11, RMSE is 84.40, and maximum error is 192.96, which are slightly better 
than LR, but the MAE (69.40) and MedAE (56.10) are somewhat higher, suggesting slightly larger typical deviations for most predictions. 
The MSLE for RFR is extremely low (0.028), indicating that on a logarithmic scale, the predictions are very close to actual values.

Conclusion
The analysis of both Linear Regression (LR) and Random Forest 

Regression (RFR) models shows that while both approaches 
perform well in predicting the target variable, the RFR model 
consistently demonstrates superior performance, particularly in 
the training phase. On the training data, RFR achieves a higher R² 
(0.9922) and explained variance (0.9923), along with significantly 
lower error metrics (MSE, RMSE, MAE, and MedAE) compared 
to LR, indicating a better fit and more accurate predictions.On the 
test data, both models generalize reasonably well, with R² values of 
0.9472 for LR and 0.9489 for RFR. Although the Random Forest 
model shows slightly higher mean and median absolute errors than 
LR, it maintains a lower maximum error and extremely low MSLE, 
suggesting it handles extreme values more robustly. Overall, the 
RFR model proves to be more reliable and precise, making it the 
preferred choice for predictive tasks in this dataset, while LR can 
still serve as a simpler baseline model.
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