

Selecting an Extract, Transform, and Load (ETL) Software Solution: A Comprehensive Evaluation and Comparison

Suresh Deepak Gurubasannavar^{1*}, Varun Venkatesh Dandasi², Raghavendra Sunku³

¹*Senior Director Information Technology, Southern Glazer's Wines and Spirits, USA

²BI Data Engineer, HCL GLobal Systems Inc., USA.

³Data Engineer, Central Mutual insurance., USA.

Abstract

Abstract: EXTRACT, TRANSFORM AND LOAD SOFTWARE SELECTION

Introduction: When it comes to selecting Extract, Transform, and Load (ETL) software, there are several factors to consider. ETL software is used to extract data from various sources, transform it into a suitable format, and load it into a target database or data warehouse. Here are some key considerations for selecting ETL software:

Data Sources and Formats: Identify the types of data sources you need to extract from and ensure the ETL software supports those sources (e.g., databases, spreadsheets, APIs). Additionally, check if the software can handle various data formats (e.g., CSV, XML, JSON) commonly used in your organization.

Scalability and Performance: Consider the scalability requirements of your data processing. If you have large volumes of data or expect significant growth, choose software that can handle high data volumes efficiently and provides good performance.

Transformation Capabilities: Evaluate the transformation capabilities offered by the ETL software. Look for features such as data cleansing, data validation, aggregation, and enrichment to ensure you can manipulate and modify the data as needed.

Ease of Use and User Interface: Consider the user-friendliness of the software and the intuitiveness of its user interface. A well-designed interface can significantly reduce the learning curve and improve productivity.

Data Security and Compliance: If your data contains sensitive or personally identifiable information, prioritize software that provides robust data security features such as encryption, access controls, and compliance with relevant regulations (e.g., GDPR, HIPAA).

Integration Capabilities: Assess the software's integration capabilities with other systems in your organization's technology stack. It should support integration with your existing databases, data warehouses, business intelligence tools, and any other relevant applications.

Workflow and Automation: Look for ETL software that offers workflow management and automation capabilities. This allows you to schedule and automate data extraction, transformation, and loading processes, reducing manual effort and improving efficiency.

Monitoring and Error Handling: Check if the software provides monitoring and error handling features. It should have mechanisms to detect and handle data quality issues, logging capabilities for troubleshooting, and notifications for failed or incomplete data transfers.

Vendor Support and Community: Consider the reputation and support provided by the software vendor. Look for a vendor with a strong track record, good customer support, and an active user community or forums where you can seek assistance and share experiences with other users.

Cost and Licensing: Evaluate the software's pricing model and licensing terms. Consider both upfront costs and ongoing maintenance or subscription fees to ensure it fits within your budget.

To make an informed decision, you can create a list of requirements based on your organization's specific needs and evaluate different ETL software options against those requirements. It's also advisable to consult with stakeholders, read reviews, and potentially conduct trials or proofs of concept to assess the software's suitability before making a final selection.

Received date: November 15, 2025 **Accepted date:** November 22, 2025; **Published date:** December 13, 2025

Corresponding Author: Deepak, S D, Sr. Director Information Technology, Southern Glazer's Wines and Spirits, United States; E-mail: sureshdeepakgurubasannavar@gmail.com

Copyright: © 2025 Deepak, S D. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Research Significance: The selection of Extract, Transform, and Load (ETL) software holds significant importance in research. ETL software enables researchers to integrate data from diverse sources and consolidate it into a unified format. Research data often originates from various systems, databases, or data repositories, and ETL software facilitates the extraction, transformation, and loading of this data into a central repository or data warehouse. This consolidation of data provides researchers with a comprehensive view for analysis, reporting, and decision-making. Moreover, ETL software plays a crucial role in ensuring data quality by offering features for data validation, cleansing, and standardization. By eliminating

Citation: Gurubasannavar. S D, Sunku. R, Dandasi. V V. (2025). Selecting an Extract, Transform, and Load (ETL) Software Solution: A Comprehensive Evaluation and Comparison . International Journal of Cloud Computing and Supply Chain Management, 1(3), 1-7. doi: <https://doi.org/10.55124/ijccscm.v1i3.249>

inconsistencies, errors, and missing values, researchers can rely on accurate and complete data for their analysis.

The software also enables data transformation and enrichment, allowing researchers to manipulate the data according to their analytical needs. This empowers them to derive new insights, create derived variables, or generate aggregated reports. Additionally, the selection of ETL software enhances research efficiency by automating repetitive data integration and transformation tasks, saving time and reducing potential errors. Scalability and performance capabilities of the software ensure that researchers can handle large datasets effectively as their projects grow in size and complexity. Furthermore, ETL software contributes to data security and compliance by offering encryption, access controls, and anonymization features to protect sensitive information and adhere to regulations. Finally, by using standardized ETL processes and documenting the steps involved, researchers can achieve reproducibility and transparency in their work, enhancing the credibility and reliability of their research findings. In conclusion, the careful selection of ETL software is vital in research as it enables data integration, ensures data quality, improves efficiency, supports scalability, enhances data security and compliance, and promotes reproducibility and transparency.

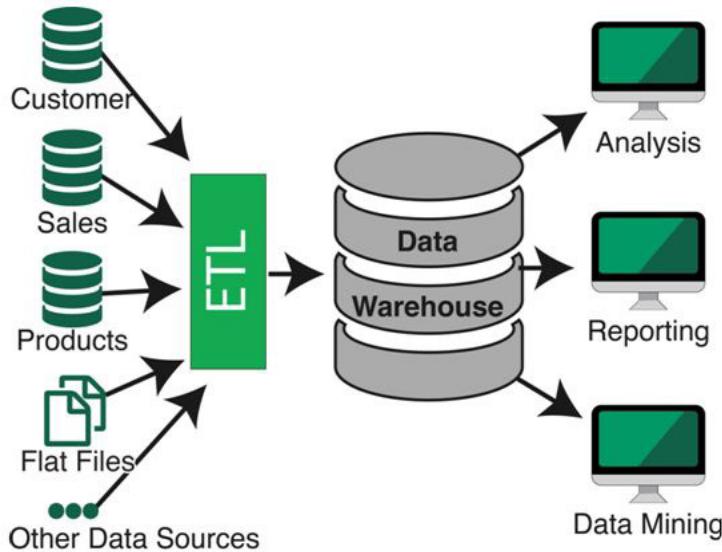
Methodology: The Decision-Making Trial and Evaluation Laboratory (DEMATEL) method is a valuable decision analysis technique used to analyze complex systems and understand the interdependencies among various factors. By constructing a causal relationship matrix, DEMATEL helps identify the cause-and-effect relationships between factors within a system. It quantifies the direct and indirect influences of each factor and calculates their total influence, providing a comprehensive understanding of the factors' impact on the entire system. Through the classification of factors based on their total influence scores, decision-makers can prioritize critical factors for intervention or improvement. The DEMATEL method enables a systematic and structured approach to decision-making by uncovering the underlying structure of the system and guiding effective interventions. However, it is crucial to involve knowledgeable experts and ensure accurate data input to obtain reliable and insightful results from the DEMATEL analysis.

Evaluation parameters: Functionality, Vendor, Usability, Cost, Reliability.

Results: Research represents the (RANK) of extract, transform and load software selection. Where first rank secured by Functionality, second rank secured by Vendor, Reliability secured 3third rank, Cost secured fourth rank and last rank is secured by usability.

Conclusion: In conclusion, selecting the right ETL software is crucial for the success of data warehousing and business intelligence projects. ETL software serves as the backbone of data integration, facilitating the extraction, transformation, and loading of data into the data warehouse. The significance of ETL software selection lies in its ability to effectively manage complex data integration processes, ensuring data accuracy, consistency, and timeliness for informed decision-making. Key factors to consider include functionality, vendor reputation, usability, cost, and reliability. By conducting a thorough evaluation and considering organizational requirements, complexities, and objectives, organizations can choose an ETL software

solution that maximizes the value of their data and supports their business intelligence initiatives. Ultimately, the right ETL software sets the foundation for efficient and reliable data integration, enabling organizations to unlock valuable insights for strategic planning and decision-making.


Keywords: Decision Making, DEMATEL, ETL, Extract, Transform, Load Software

Introduction

We all have the common goal of regularly loading data into our data warehouse to facilitate business analysis [1]. This involves extracting data from one or more operational systems and transferring it to the warehouse. The process, known as ETL (extraction, transformation, and loading), is a vital component of data warehousing. When operations like INSERT, UPDATE, or DELETE are performed on the source database using DML (data manipulation language), data extraction takes place. After extraction and transformation, the data is loaded into the data warehouse. The first step in the ETL process is extraction, which involves retrieving data from the source systems. Data warehousing projects typically combine data from different sources, each potentially using a different data format such as relational databases, flat files, or non-relational structures like IMS. Extraction converts the data into a suitable format for further processing, reducing the quantity of data by excluding irrelevant datasets. It is essential to perform extraction without negatively impacting the performance of the source systems, often running as a background task during low-activity periods such as overnight. The second step, transformation, focuses on making the data interpretable in business terms. Any necessary data cleansing and manipulation are performed in this stage. ETL tools have been developed over time to support tasks such as Big Data processing, data warehousing, business intelligence, and analytics. However, these tools often come with high costs and may not be affordable or suitable for small-sized businesses. Additionally, configuring such tools can be time-consuming.

Data quality tests and balancing tests are two examples of functional testing that have been recommended in the literature to evaluate the accuracy of ETL procedures [11]. Data quality checks concentrate on checking each individual piece of data in the data warehouse, looking for any violations of syntactic and semantic rules. Comparing the data in the source systems with the comparable data in the target warehouse, however, enables balancing checks to identify any unintended disparities. To make sure that ETL processes are correct, data quality and balancing tests are also required. Data quality tests are crucial for validating the syntactic and semantic aspects of the target data separately and guaranteeing that the ETL transformations produce data that complies with the target model and any applicable domain-specific requirements.

However, errors in any ETL component could lead to inaccurate data being stored in the warehouse, which cannot be detected solely through data quality tests. For example, erroneous settings of ETL parameters during process execution can lead to data truncation, duplication, or incorrect sequencing of ETL steps. System failures or connection losses can also cause data loss or duplication in the warehouse. To address such issues, balancing tests are performed to verify that the ETL process does not lose or incorrectly modify the data obtained from the sources. Existing data quality techniques are made for either checking universally applicable

syntactic features or domain-specific semantic and syntactic properties. These technologies rely on specifications created and re-evaluated on a regular basis by subject-matter specialists to meet the demands of data users. However, there aren't many technologies available that can automatically produce particular attributes from the data kept in the warehouse. Additionally, the business requirements do not consistently provide the attributes in an organised manner, necessitating the use of testers to fill in the gaps between the requirements and the assertions of data quality tests.

In the dissertation, the researcher plans to develop an approach utilizing machine learning and data mining techniques to automatically identify data properties. The goal is to enhance existing properties and incorporate specific properties that may have been overlooked by domain experts. The proposed approach will automatically generate assertions to validate these properties and will be evaluated using warehouses from various domains. Existing methods for balancing testing primarily compare the data that is not changed throughout the ETL process. Finding the source-to-target mappings, which explain the connections between entities (tables, attributes, and records) in the source and target systems, is essential for conducting effective balancing tests. Current solutions either rely on automated techniques that only take into account one-to-one table and attribute mappings or call for the manual identification of these mappings. The researcher created a balancing test method that uses ETL transformation rules to automatically identify various mapping types in earlier work [12]. Additionally, a method for automatically producing assertions for verifying data transformed through the ETL process was devised. By fixing its shortcomings and putting it to the test with warehouses from various industries, the researcher hopes to improve the balancing test approach's performance in the remaining sections of the dissertation.

Materials and Methods

Evaluation parameters: Evaluation parameters play a vital role in the software selection process. Functionality is a crucial parameter that focuses on the range and effectiveness of features offered by the software, ensuring it meets the specific requirements of the organization. Vendor evaluation assesses the credibility and reliability of the software vendor, considering factors like their track record, financial stability, and industry expertise. Usability examines the software's ease of use and user experience, taking into account factors such as the user interface, navigation, and intuitiveness. Cost evaluation involves assessing the total cost of ownership, including licensing fees, implementation costs, maintenance expenses, and potential additional costs. Finally, reliability evaluation examines the software's stability, performance, and availability, ensuring it can consistently meet the organization's operational needs. By considering these evaluation parameters, organizations can make informed decisions and select a software solution that best aligns with their requirements and objectives.

Functionality: Functionality refers to the range and effectiveness of features and capabilities offered by the software. It assesses how well the software meets the specific requirements and objectives of the user or organization. Evaluating functionality involves considering factors such as the software's core functionalities, integration capabilities, customization options, and scalability to accommodate future needs.

Vendor: The vendor criterion focuses on the reputation, reliability, and support provided by the software vendor. It includes factors like the vendor's track record, financial stability, customer reviews, and expertise in the industry. Assessing the vendor's credibility and compatibility with the organization's values and requirements helps ensure a successful partnership and long-term support for the software.

Usability: Usability refers to the ease of learning and using the software. It involves evaluating the user interface, intuitiveness, navigation, and overall user experience. Software with high usability reduces training time, minimizes errors, and increases

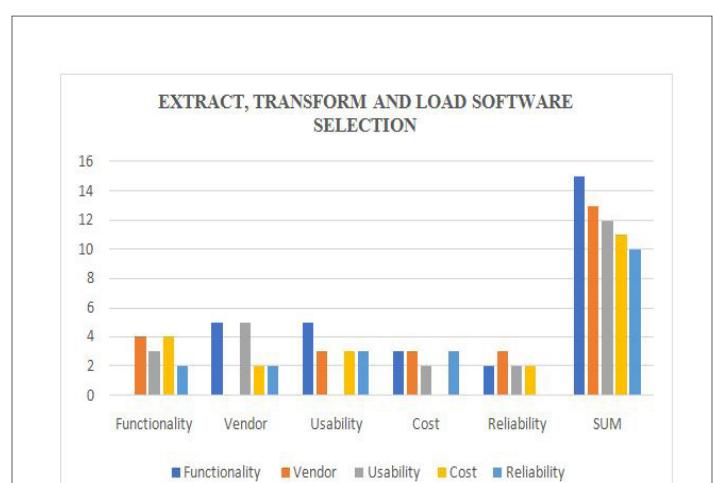
user productivity. Usability testing and user feedback are crucial in assessing how well the software meets user needs and preferences.

Cost: Cost considerations include both the initial purchase price and the total cost of ownership (TCO) over the software's lifecycle. Evaluating cost involves assessing licensing fees, maintenance costs, implementation expenses, training costs, and potential additional expenses such as customization, upgrades, and support. It is essential to determine the software's value in relation to its cost and the organization's budgetary constraints.

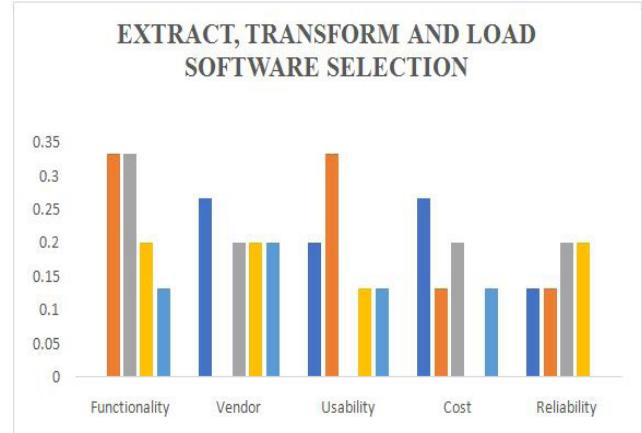
Reliability: Reliability refers to the software's stability, performance, and availability. It includes factors like the software's uptime, responsiveness, error handling capabilities, and ability to handle peak loads. Reliability also considers the software's track record in terms of bugs, glitches, and security vulnerabilities. Assessing reliability ensures that the software can perform consistently and meet the organization's operational requirements without significant disruptions.

"When selecting software, considering these criteria helps organizations make informed decisions based on their specific needs and priorities. It is essential to weigh each criterion based on its relative importance and conduct thorough evaluations, such as software demos, trials, and references, to ensure the software aligns with the organization's goals and requirements"

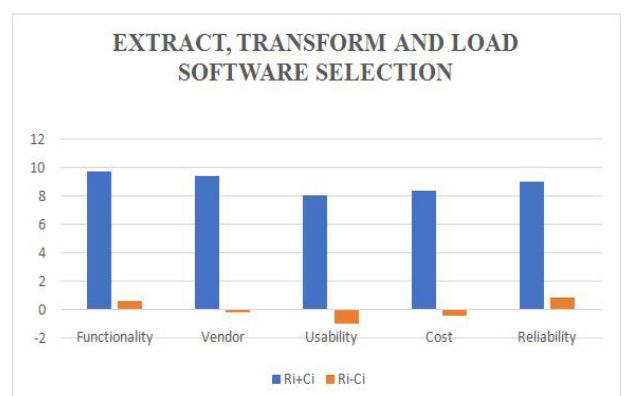
Methodology


In order to analyse complicated systems and comprehend the interdependencies among numerous components, decision analysis techniques like the Decision-Making Trial and Evaluation Laboratory (DEMATEL) method are quite useful. By constructing a causal relationship matrix, DEMATEL helps identify the cause-and-effect relationships between factors within a system. It quantifies the direct and indirect influences of each factor and calculates their total influence, providing a comprehensive understanding of the factors' impact on the entire system. Through the classification of factors based on their total influence scores, decision-makers can prioritize critical factors for intervention or improvement. The DEMATEL method enables a systematic and structured approach to decision-making by uncovering the underlying structure of the system and guiding effective interventions. However, it is crucial to involve knowledgeable experts and ensure accurate data input to obtain reliable and insightful results from the DEMATEL analysis.

Results and Discussion


Table 1: Extract, Transform And Load Software Selection

DATA MATRIX						
Alternatives	Functionality	Vendor	Usability	Cost	Reliability	SUM
Functionality	0	5	5	3	2	15
Vendor	4	0	3	3	3	13
Usability	3	5	0	2	2	12
Cost	4	2	3	0	2	11
Reliability	2	2	3	3	0	10


Table 1 displays the following information Evaluation parameters: Functionality, Vendor, Usability, Cost, and Reliability

Graph 1 represents the following information Evaluation parameters: Functionality, Vendor, Usability, Cost, Reliability

Graph 2 represents the Normalization of direct relaxation matrix of extract, transform and load software selection

Graph3 displays the (RI+CI, RI-CI) of extract, transform and load software selection

Table 2: Normalization of direct relation matrix

Alternatives	Functionality	Vendor	Usability	Cost	Reliability
Functionality	0	0.333333333	0.333333333	0.2	0.133333333
Vendor	0.266666667	0	0.2	0.2	0.2
Usability	0.2	0.333333333	0	0.133333333	0.133333333
Cost	0.266666667	0.133333333	0.2	0	0.133333333
Reliability	0.133333333	0.133333333	0.2	0.2	0

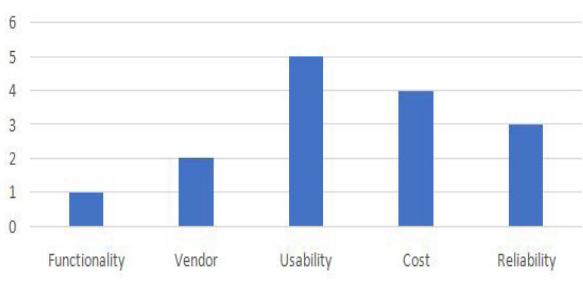
Table 2 displays Normalization of direct relaxation matrix of extract, transform and load software selection

Table 3: Ri+Ci and Ri-Ci

Alternatives	Ri+Ci	Ri-Ci
Functionality	9.7392687	0.6783254
Vendor	9.4430313	-0.199788
Usability	8.0600601	-0.9673203
Cost	8.4228935	-0.4101749
Reliability	9.0045928	0.8989578

Table 3 Displays The (RI+CI, RI-CI) Of Extract, Transform And Load Software Selection

Conclusion


In conclusion, the selection of Extract, Transform, and Load (ETL) software plays a critical role in the success of data warehousing and business intelligence initiatives. ETL software serves as the backbone of data integration, enabling the extraction of data from various sources, its transformation into a suitable format, and the loading of transformed data into the data warehouse. The significance of ETL software selection lies in its ability to effectively and efficiently manage the complex data integration processes involved in populating the data warehouse. By choosing the right ETL software, organizations can ensure data accuracy, consistency, and timeliness, enabling effective decision-making and business analysis. Several key factors need to be considered during the ETL software selection process. Functionality is a primary consideration, encompassing features such as data extraction capabilities, transformation functionalities, data quality management, and integration with different data sources and target systems.

The software's vendor reputation, reliability, support, and long-term viability are also crucial factors to assess. Usability is another important aspect, as a user-friendly and intuitive interface can enhance productivity and reduce training time. Cost considerations encompass not only the initial purchase price but also ongoing maintenance, support, and potential customization expenses. Reliability is paramount, ensuring that the selected ETL software can handle large volumes of data, maintain data integrity, and deliver consistent performance without system failures or data loss. The research on ETL software selection provides valuable insights and guidelines for organizations to make informed decisions. By conducting a thorough evaluation based on these factors and considering specific organizational requirements, data integration complexities, and business objectives, organizations can choose an ETL software solution that best aligns with their needs and maximizes the value of their data warehouse and business intelligence initiatives. Ultimately, the selection of the right ETL software sets the foundation for efficient and reliable data integration, enabling organizations to harness the full potential of their data and derive meaningful insights for informed decision-making and strategic planning.

References

1. De Giusti, Marisa Raquel, Ariel Jorge Lira, and Néstor Fabián Oviedo. "Extract, Transform and Load architecture for metadata collection." In VI SimposioInternacional de BibliotecasDigitales (Brasil, 2011). 2011.
2. Simitsis, Alkis. "Modeling and optimization of extraction-transformation-loading (ETL) processes in data warehouse environments." National Technical University of Athens: PhD Thesis, Athens, Greece (2004).
3. Aka, V. P. K. (2025). Enhancing SAP Full-Cycle Automation and

EXTRACT, TRANSFORM AND LOAD SOFTWARE SELECTION

Graph 4 represents the (RANK) of extract, transform and load software selection. Where first rank secured by Functionality, second rank secured by Vendor, Reliability secured 3third rank, Cost secured fourth rank and last rank is secured by usability.

Cost Efficiency with OpenText VIM: A Regression-Based Predictive Study. *International Journal of Cloud Computing and Supply Chain Management*, 1(3). doi: <https://doi.org/10.55124/ijccscm.v1i3.247>

4. Piirainen, Esko, Wu Zhengzhe, Lisa French, Sofie De Smedt, Rui Figueira, Pedro Arsénio, Elspeth Haston, and Laurence Livermore. "MS3. 6 Best Practice Standardised Extract, Transform and Load (ETL) procedures." (2022).
5. Gundala, Tirumala Rao. (2024). Performance Optimization for Micro-Frontend-Based Applications: A Predictive Analysis Using XG Boost Regression. *Journal of Business Intelligence and Data Analytics*, 2(3), 1-6. <https://doi.org/10.55124/jbid.v2i3.256>
6. Piirainen, Esko, Wu Zhengzhe, Lisa French, Sofie De Smedt, Rui Figueira, Pedro Arsénio, Elspeth Haston, and Laurence Livermore. "MS3. 6 Best Practice Standardised Extract, Transform and Load (ETL) procedures." (2022).
7. Nuovo, Michele. "MYETL: A JAVA SOFTWARE TOOL TO EXTRACT, TRANSFORM, & LOAD YOUR BUSINESS." In *cris*, p. 0011. 2015.
8. Nagababu Kandula. (2024). Machine Learning Based Fraud Risk Scoring for Financial Transactions Using a Comparative Study of Random Forest and Support Vector Regression Models. *International Journal of Intellectual Advancements and Research in Engineering Computations*, 12(4), 1-9. Retrieved from <https://ijiarec.com/ijiarec/article/view/1837>
9. Biplob, Md Badiuzzaman, GalibAhasanSheraji, and Shahidul Islam Khan. "Comparison of different extraction transformation and loading tools for data warehousing." In 2018 international conference on innovations in science, engineering and technology (ICISET), pp. 262-267. IEEE, 2018.
10. Biplob, Md Badiuzzaman, GalibAhasanSheraji, and Shahidul Islam Khan. "Comparison of different extraction transformation and loading tools for data warehousing." In 2018 international conference on innovations in science, engineering and technology (ICISET), pp. 262-267. IEEE, 2018.
11. Viana, Nuno, Ricardo Raminhos, and João Moura-Pires. "A real time data extraction, transformation and loading solution for semi-structured text files." In *Progress in Artificial Intelligence: 12th Portuguese Conference on Artificial Intelligence, EPIA 2005, Covilhã, Portugal, December 5-8, 2005. Proceedings* 12, pp. 383-394. Springer Berlin Heidelberg, 2005.
12. Samms, Kevin O. FJET Database Project: Extract, Transform, and Load. No. KSC-E-DAA-TN28363. 2015.
13. Samms, Kevin O. FJET Database Project: Extract, Transform, and Load. No. KSC-E-DAA-TN28363. 2015.
14. Ayele, Sololia G. "Applying a meta-data-driven modeling approach to Extract-Transform-Load (ETL) Systems." (2018).
15. Seymour, Karine, and Pierre Payoux. "Radiomics Enabler®, an ETL (Extract-Transform-Load) for biomedical imaging in big-data projects." (2017).
16. Amanpartap Singh, P. A. L. L., and Jaiteg Singh Khaira. "A comparative review of extraction, transformation and loading tools." *Database Systems Journal BOARD* 42 (2013).
17. Bao, Yuguang, Xianyu Zhang, Tongtong Zhou, Zhihua Chen, and Xinguo Ming. "Application of Industrial Internet for Equipment Asset Management in Social Digitalization Platform Based on System Engineering Using Fuzzy DEMATEL-TOPSIS." *Machines* 10, no. 12 (2022): 1137.
18. Rathee, Somvir, Anil Kumar, Sudha Kaushik, EdmundasKazimierasZavadskas, AudriusBanaitis, and Jose Arturo Garza-Reyes. "An MCDA cause-effect factors model for the implementation of Greenstone Digital Library software." *Management Decision* 58, no. 11 (2020): 2543-2564.
19. Wang, Chih-Hsuan. "Using quality function deployment to conduct vendor assessment and supplier recommendation for business-intelligence systems." *Computers & Industrial Engineering* 84 (2015): 24-31.
20. Gundala, Tirumala Rao. (2024). Oracle OIPA Cloud Migration Analysis: Machine Learning Models for Predicting Resource Utilization and Success Outcomes. *International Journal of Artificial intelligence and Machine Learning*, 2(3), 1-8. <https://doi.org/10.55124/jaim.v2i3.284>
21. Wang, Chih-Hsuan. "Using quality function deployment to conduct vendor assessment and." (2014).
22. Nagababu, K. (2023). Characterizing Adverse Effects and Risk Factors in Multidrug Tuberculosis Regimens: Implications for Personalized Treatment Protocols. *International Journal of Artificial intelligence and Machine Learning*, 1(2), 1-8. <https://doi.org/10.55124/jaim.v1i2.291>
23. Antomarioni, Sara, Maurizio Bevilacqua, Filippo Emanuele Ciarapica, and Giovanni Di Nicola. "Data-driven approaches to maintenance policy definition: general framework and applications."
24. Sharma, Neetu. "Extract transform load data with etl tools like 'Informatica'." *International Journal of Advanced Research in IT and Engineering* 5, no. 7 (2016): 17-42.
25. Venkata Pavan Kumar Aka and Kiran Kumar Mandula Samuel. (2024). Adoption of SAP FSCM – Enhancing Collections and Dispute Processes in Spain, Portugal, and UK Operations. *International Journal of Information Technology and Management Information Systems (IJITMIS)*, 15(2), 148–161.
26. DOI: https://doi.org/10.34218/IJITMIS_15_02_012
27. Tzeng, Gwo-Hshiung, Cheng-Hsin Chiang, and Chung-Wei Li. "Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL." *Expert systems with Applications* 32, no. 4 (2007): 1028-1044.
28. Yang, Yu-Ping Ou, How-Ming Shieh, Jun-Der Leu, and Gwo-Hshiung Tzeng. "A novel hybrid MCDM model combined with DEMATEL and ANP with applications." *International journal of operations research* 5, no. 3 (2008): 160-168.
29. Rathee, Somvir, Anil Kumar, Sudha Kaushik, EdmundasKazimierasZavadskas, AudriusBanaitis, and Jose Arturo Garza-Reyes. "An MCDA cause-effect factors model for the implementation of Greenstone Digital Library software." *Management Decision* 58, no. 11 (2020): 2543-2564.
30. Han, Yuzhen, and Yong Deng. "An enhanced fuzzy evidential DEMATEL method with its application to identify critical success factors." *Soft computing* 22 (2018): 5073-5090.
31. Han, Yuzhen, and Yong Deng. "An enhanced fuzzy evidential DEMATEL method with its application to identify critical success factors." *Soft computing* 22 (2018): 5073-5090.
32. Ortiz Barrios, Miguel, Carlos Miranda De la Hoz, Pedro López Meza, Antonella Petrillo, and Fabio De Felice. "A case of food supply chain management with AHP, DEMATEL, and TOPSIS." *Journal of Multi Criteria Decision Analysis* 27, no. 1-2 (2020): 104-128.
33. Ortiz Barrios, Miguel, Carlos Miranda De la Hoz, Pedro López Meza, Antonella Petrillo, and Fabio De Felice. "A case of food supply chain mana-Criteria Decision Analysis 27, no. 1-2 (2020): 104-128.

34. Lin, Chia-Li, and Gwo-Hshiung Tzeng. "A value-created system of science (technology) park by using DEMATEL." *Expert systems with applications* 36, no. 6 (2009): 9683-9697.
35. Büyüközkan, Gülcin, and Gizem Çifçi. "A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers." *Expert Systems with Applications* 39, no. 3 (2012): 3000-3011.
36. Nagababu. K. (2025). Enterprise-Level Emphasis Operational Analytics: Predicting Healthcare Encounter Resolution Success Using Machine Learning. *International Journal of Robotics and Machine Learning Technologies*, 1(2), 1-6, doi: <https://doi.org/10.55124/ijrml.v1i2.242>
37. Govindan, Kannan, and Atanu Chaudhuri. "Interrelationships of risks faced by third party logistics service providers: A DEMATEL based approach." *Transportation research part E: logistics and transportation review* 90 (2016): 177-195.